Parametric Euler Sum Identities

نویسندگان

  • David Borwein
  • Jonathan M. Borwein
  • David M. Bradley
چکیده

We consider some parametrized classes of multiple sums first studied by Euler. Identities between meromorphic functions of one or more variables in many cases account for reduction formulae for these sums.  2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Praise of an Elementary Identity of Euler

We survey the applications of an elementary identity used by Euler in one of his proofs of the Pentagonal Number Theorem. Using a suitably reformulated version of this identity that we call Euler’s Telescoping Lemma, we give alternate proofs of all the key summation theorems for terminating Hypergeometric Series and Basic Hypergeometric Series, including the terminating Binomial Theorem, the Ch...

متن کامل

On Various Combinatorial Sums and Related Identities

In this talk we give a survey of results and methods on some combinatorial sums involving binomial coefficients and related to Bernoulli and Euler polynomials. We will also talk about certain sums of minima and maxima related to Dedekind sums. Some interesting identities associated with the various sums will also be introduced. 1. A curious identity and the sum ∑ k≡r (mod m) ( n k ) In 1988 Zhi...

متن کامل

Identities Involving Two Kinds of q-Euler Polynomials and Numbers

We introduce two kinds of q-Euler polynomials and numbers, and investigate many of their interesting properties. In particular, we establish q-symmetry properties of these q-Euler polynomials, from which we recover the so-called Kaneko-Momiyama identity for the ordinary Euler polynomials, discovered recently by Wu, Sun, and Pan. Indeed, a q-symmetry and q-recurrence formulas among sum of produc...

متن کامل

COMPLETE SUM OF PRODUCTS OF (h,q)-EXTENSION OF EULER POLYNOMIALS AND NUMBERS

By using the fermionic p-adic q-Volkenborn integral, we construct generating functions of higher-order (h, q)-extension of Euler polynomials and numbers. By using these numbers and polynomials, we give new approach to the complete sums of products of (h, q)-extension of Euler polynomials and numbers one of which is given by the following form: are the multinomial coefficients and E (h) m,q (y) ...

متن کامل

Symmetry Fermionic p-Adic q-Integral on ℤp for Eulerian Polynomials

Kim et al. 2012 introduced an interesting p-adic analogue of the Eulerian polynomials. They studied some identities on the Eulerian polynomials in connection with the Genocchi, Euler, and tangent numbers. In this paper, by applying the symmetry of the fermionic p-adic q-integral on Zp, defined by Kim 2008 , we show a symmetric relation between the q-extension of the alternating sum of integer p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004